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Abstract—A wideband millimeter-wave (mmWave) CML static
divider fabricated in 65nm SOI CMOS technology is presented.
The mmWave system realization trend and engagement in sub-
100nm CMOS technologies are summarized. CML static divider’s
circuit analysis, sensitivity curve, and simulations are explored.
The input-locking hysteresis and divider DC bias tuning are
employed to extend the divider operation range. The divider
performance measurements are presented with hysteresis-assisted
gain and figure-of-merits. A scalable statistical estimation is
proposed, and it is validated with a full 300mm wafer measure-
ments. The divider exhibits wideband mmWave performance to
overcome the process variability in sub-100nm CMOS processes.

I. INTRODUCTION

The 60GHz range milli-meter wave (mmWave) physical
links are emerging as a next generation short-range wide-
bandwidth communications channel [1], [2]. The CMOS tech-
nology is becoming a strong candidate for the mmWave system
design platform due to its manufacturing capability, system-
on-chip (SoC) integration with baseband and digital intellec-
tual property, and high-speed performance through technology
scaling [3]. As CMOS FET’s gate length scales aggressively,
the device density has increased, and high-speed performance
also has been improved down to 45nm. For example, 45nm
SOI NFET’s fT is beyond 400GHz [4], and it provides enough
design margin for mmWave analog system, though the device
speed will reach the physical limit soon [5]. The adversaries
of sub-100nm CMOS are the up-front costs for development
and mask [6], and the aggravated defects and process variabil-
ity [7], [8]. The variability affects the analog clock generation
and transceiver front-ends of mmWave SoC more than the
digital block. It is because of the small device dimension and
parasitic capacitance contribution, which is relative to the total
parasitic allowance. Especially the mmWave tranceiver and
PLL shown in Fig. 1 are susceptible to the variation. The PLL
front-end components - VCO and the pre-scaling frequency
divider [9] - are potential bottlenecks for SoC chip-limited
yield (CLY) due to the variability. It is essential to have a
wideband tunable VCO and wideband divider to overcome
the variation, while the technology stabilization is enforced.

This paper presents wideband CML static divider analysis,
design, and measurements in 65nm SOI CMOS, as summa-
rized in Fig. 1. The mmWave system implementation trend
and the technology-to-circuit interaction between CMOS and

mmWave analog system design are discussed as backgrounds
in II. The CML static divider design process is reviewed in
III. The divider small-signal analysis, sensitivity curve, models
for hysteresis between input-locked and self-oscillation modes,
circuit design parameters, and simulation results are explored.
In IV, divider test methodology is presented. The mmWave test
setup, divider measurements, performance comparison, figure-
of-merits (FoMs), process variation, and scalable statistical
estimation are examined.

II. BACKGROUNDS

The mmWave channel realization trends are reviewed from
technology and application perspectives in II-A. The increas-
ing overlap and collaboration between CMOS technology and
mmWave analog design are discussed in II-B.

A. Application

The high-definition multimedia contents are overloading
existing channels with data bandwidth and the cumbersome
cable connections. To meet the demands, the interests on
mmWave system have been elevated for last several years [1],
[10]–[12]. A survey on IEEE International Solid-State Circuits
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Fig. 1. Overview of the paper. The mmWave channel SoC implementation
trend and CMOS technology-to-design interaction are reviewed (II). The
PLL front-end frequency divider is the main concern in the paper, and it
is susceptible to the process variability in sub-100nm along the VCO. The
divider design (III) and measurements (IV) are presented.
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Fig. 2. Last 5-year trend of above-50GHz circuits in ISSCC. (a) The
number of papers have been increasing steadily. Also more mature systems
and higher-level of integrations have appeared. (b) Technology engagement
trend. The 90nm CMOS has become the major platform in 2008, and 65nm
implementations begin to appear. There are a few 0.25µm and 45nm entries
not shown in the plot for simplicity.

TABLE I
CMOS MMWAVE DIVIDER PERFORMANCE

Type fmin fmax BW (GHz) CMOS Ref.

Static

<64.7 94.4 >29.7 65nm [17]

73 100 27 65nm [18]

5 66 61 90nm [19]

Dynamic

85.2 96.2 11 90nm [13]

82 94.1 12.1 65nm [14]

64 70 6 0.13µm [15]

62.9 71.6 8.7 90nm [16]

Conference (ISSCC) for the last 5 years is given in Fig. 2.
Circuits that operates above 50GHz are collected for the plot.
The number of papers has increased in Fig. 2(a). In 2008,
most of circuits are being implemented in 90nm CMOS, and
the number has been increasing steadily. Also 65nm circuits
are emerging, beginning in 2007. Once 0.13µm CMOS was
considered enough for mmWave, but designers are moving
to new scaled technologies for better performance. There are
trade-offs among the fabrication cost, foundry access, and the
design margin. It is yet to say that 90nm will be the main
mmWave platform. It is likely that the popularity will shift
toward 65nm and 45nm for the high-speed design margin and
state-of-the-art performance.

As shown in Fig. 1, the prescaling frequency divider is an
essential function block for mmWave signal generation. Many
of mmWave PLL implementations use dynamic injection-
locked designs to take advantage of the high-speed perfor-
mance [13]–[16]. The CML-based static dividers operate at
lower frequency, but they have wider operation range [17]–
[19]. The dynamic and static classification is based on its
operational concept and origin. Their performances are ar-
ranged in the Table I. The performances in the table are not
necessarily accurate metrics, due to the uncertainties in the
measurement setup. Still they are regarded as the best-effort
results and demonstration. In general, the CML static dividers
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Fig. 3. Divider variability and yield. (a) Divider self-oscillation frequency
fSO sorted with the ascending site variation. High-speed circuits involve
more variation. The relative variation has no unit and it is scaled to fit
the plot. There are 73 site × 12 wafers = 876 data points. (b) Estimated
divider yield with input-referred divider operation bandwidth. A divider meets
the specification when it covers at 57-64GHz with a given bandwidth. The
bandwidth is assumed symmetric around the self-oscillation frequency. About
28.2GHz operating range is required for 95% yield.

offer wider bandwidth than dynamic dividers. Also the CML
dividers have reached higher fmax,div, but the different CMOS
technologies make it difficult to compare.

When a mmWave system engages sub-100nm CMOS, the
process variability should be considered for manufacturability.
The variability of a CML divider is plotted in Fig. 3. One lot
of 12 wafers in 65nm SOI CMOS was measured for the plot. It
is using self-oscillation frequency fSO to estimated the divider
variability [18]–[20]. The variability experienced by injection-
locked and CML static dividers is different. Nevertheless,
the front-end of line (FEOL) component variation should
be similar in both designs. Using the fSO data and divider
bandwidth, a CLY of a 57-64GHz mmWave PLL is calculated.
In Fig. 3, 28.2GHz divider range is necessary to meet 95%
divider yield. Most of dynamic dividers fall short of the
bandwidth, and the CML static divider becomes an attractive
alternative to overcome the process variation.

B. CMOS Technology and mmWave Design

As mmWave system designs adopt sub-100nm CMOS, the
interaction between circuit and device technology becomes
essential [21]. The technology complexity, process variability,
and system integration challenge should be conveyed to de-
signers. For example, a mmWave designer should be aware of
not only technology native device offerings but also secondary
options. Fig. 4 shows 65nm SOI CMOS FEOL and back-
end of line (BEOL) stack diagram, and device options to
make the most out of it. The analog FET performance is
optimized with the adjusted gate-to-contact pitches and the
number of contacts, as shown in Fig. 4(c). The pitch relaxation
improves FET high-speed performance by reducing parasitic
gate-to-contact capacitance and enhancing the stress liner
efficiency and the carrier mobility [22], [23]. For passives,
the technology options should be considered carefully. The
different BEOL dielectric materials and air gap [24] could
be offered as layer options. Inductor and BEOL vertical
native capacitor (VNCAP) designs are determined along the
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Fig. 5. The SOI CMOS technology current gain cut-off frequency fT scaling
trends in sub-100nm nodes. Not only the device density, but also high-speed
performances have been scaled down to 45nm node.

technology options [25], [26]. After all, the CMOS platform
itself becomes a menu to choose. CMOS performance has
been scaled in high-speed performance so far as shown in
Fig. 5 [4], [22], [27]. High-speed analog device performance
will be improved along the novel digital device development,
such as asymmetric FET and FinFET, and node scaling.
The technology adoption trend in Fig. 2 shows that 90nm
becomes the majority for mmWave circuits. Previously, 0.18
and 0.13µm CMOS technologies have been RF SoC design
platform for several years. The mmWave CMOS platform
adoption is limited by the technology accessibility, process
variability, model uncertainty, manufacturing stability, and
development and mask costs. It will take years to complete
the technology performance exploration and mmWave system
integration.

III. CML STATIC DIVIDER DESIGN

The CML static divider design process is described. The
circuit is analyzed with small-signal model in III-A. The ana-
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Fig. 6. CML static divider schematic diagrams. (a) A latch stage with a
differential and a negative gm pairs. (b) Divider as a master-slave flip-flop
with AC coupled RF input and DC bias VBIAS control. The phase relation
is used to model the divider in steady state.

lytic results are used to derive sensitivity curve and hysteresis
models in III-B. The circuit design is reviewed in III-C. The
analysis is supported by circuit simulations in III-D.

A. Circuit Analysis

CML static divider topology is analyzed with a small-
signal model and approximations. Fig. 6 shows diagrams of
a latch stage and a divider as a master-slave flip-flop. The
topology and its variants have been implemented in several
CMOS generations [17]–[19], [28], [29] and non-CMOS tech-
nologies [30], [31]. They are referred to as static dividers,
in contrast to the dynamic injection-locked dividers [13]–
[16]. The topology also has been implemented as technology
performance benchmark vehicles. In spite of the common
use, the circuit has not been analyzed in detail. The use
of sensitivity curve for performance characterization lacks a
general model, whereas VCO has phase noise models [32].

The CML static divider is solved by approximating the
differential stages as single-balanced mixer and with steady-
state complex analysis at the output frequency. The circuit
small-signal analysis is based on several assumptions. They
are: 1) Small-signal approximation of differential pair gm, 2)
Input and output frequency locking in single-balanced mixer,
3) Steady-state operation at output frequency, and 4) Bi-
stable divider status between input-locked (IL) mode and self-
oscillation (SO) mode.

The differential pair small-signal gain gM,D is modulated
by the tail input vI and tail current, and it is approximated
with a power series expansion assuming that tail DC current
is much larger than small-signal current it � IT . Then high-
order terms are ignored.

gM,D ≈
√

βDIT

[
1 +

it(t)
2IT

]
(1)

The differential pair output current iD = gM,D · vm.

iD(t) = GM,Dvm(t) +

√
βDβT

2
vi(t)vm(t) (2)

The multiplication term vi(t)vm(t) involves complicated har-
monics as a mixer. For simplicity, the input vi frequency fin is
twice of local vm frequency fout. The third harmonic at 3fout
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is ignored. It is because the entire loop works as a low-pass
filter at high-frequency region [28].

vi(t)vm(t) ≈ AiAo

2
cos

[
2πfot +

π

2
+ φ

]
(3)

At the output frequency, the circuit node maintains steady-state
phase noted in Fig. 6(b), including inversion from differential
stage. The local input vM and output vO in Fig. 6(a) has
90-degree difference. The φ is the phase difference between
RF input vI and output vO. The −vI in Fig. 6(a) has a 180-
degree phase difference at the input frequency. The steady-
state current summation at the output node is in (4). The
RO and CL are the effective small-signal load resistance and
capacitance at the output node. The equation is solved in
real and imaginary terms, using trigonometric relations and
the Pythagorean identity. Then it is arranged as an equation
of circle in (5), for geometric visualization and analysis.
The GM,N and GM,D are considered as both variables and
constants. It denotes a circle on admittance plane Y = G+jB.
It is centered at (1/RO, 2πfSOCL), where fSO is the self-
oscillation frequency. The radius is a linear function of input
signal amplitude Ai. Considering angles θ and φ, not every
point on the circle is a solution for the circuit, but it is useful
for the circuit behavior visualization.

B. Sensitivity and Hysteresis

The analytic results are utilized to develop divider sensitivity
curve and hysteresis models. The implications of the circle
in (5) is explained in Fig. 7. There are two cases: A) self-
oscillation (SO) and B) input-locked (IL) modes. We assume
that the divider is bistable between the SO and IL modes.
When Ai = 0, the radius of the circle is 0, and the solution
remains on the bias line as a point. This corresponds to the SO
mode. In the IL mode, input should be strong enough Ai > 0,
so that the circuit solution moves away from the bias point
to a point on the circle. By adjusting VBIAS , the bias point
moves along the bias line. For given a condition, a divider in
IL mode will exit the mode and enters SO mode, when either
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Fig. 8. CML static divider amplitude and frequency hysteresis models.
(a) Amplitude sweep hysteresis model. The input signal amplitude Ai’s
downward sweep from IL mode experiences a step transition at point C to SO
mode with a frequency jump. The Ai’s upward sweep begins to lock when
the self-oscillation frequency meets the desired output frequency at point D.
(b) Frequency sweep hysteresis model. The input frequency fin increase from
IL mode sweep makes a frequency jump at point E to SO. The fin decrease
sweep locks to input when fSO reaches the desired output frequency at F.

input frequency or Ai changes so that IL mode solution does
not exist. Also a divider in SO mode will remain in the same
mode, moving along the bias line until it finds an IL mode
solution. Using the model, the divider sensitivity curve and
hysteresis model in Fig. 7(b) are obtained.

The derivation begins with amplitude direction hysteresis
at a fixed frequency in Fig. 8(a). When the divider input
amplitude Ai goes down from an IL mode, there is more than
one solution until point C. Passing C, the divider will make
a step-like frequency transition to SO mode, since there is no
solution for IL mode. When Ai goes up from a SO mode, the
output frequency moves along the bias line till it meets the
desired output frequency at D. The divider moves into the IL
mode smoothly, by moving along the circle.

The definition of the divider sensitivity curve (SC) is
the minimum input power that a divider operates at each
frequency. Therefore, there are two different minimum power
levels, whether it begins from IL or SO mode. The Ai down-
ward sweep SC Ai,dn(f) is more optimistic, and it is obtained
by calculating the minimum Ai necessary to remain locked at
the desired output and input-referred frequency fin = 2fout.

Ai,dn(fin) ≥ 2
√

2√
βDβT + βNβU

|GM,D − πfinCL| (6)

The Ai upward sweep SC is Ai,up = Ai,dn/ cos ϕ, using the
trigonometric relation in Fig. 8(a). The curves in Fig. 7(b) are
obtained with (6) and scaling by 1/ cos ϕ. The SC slope is
2
√

2 ·πCL/
√

βDβT + βNβU (V/Hz), and it serves as a FoM.
Fig. 8(a) predicts the frequency-direction hysteresis, whose
model is described in Fig. 8(b). For frequency sweep, the
Ai, or the radius of the circle is fixed. When input frequency
increases from IL mode, there is more than one solution till
point E. After E, the divider will make a sudden frequency
change to SO mode, since there is no solution beyond E. As the
input frequency decreases from SO mode, there is no solution
on the bias line, until it reaches point F. Then the divider will
be able to lock to input gradually without frequency change.
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C. Circuit Design

The CML divider was implemented in 65nm SOI CMOS.
The circuit does not have waveguides, and relies on dis-
crete active and passive components. In the early technology
development stage, the device and parasitic models are far
away from the reality. Though the design uses target models,
the divider high-speed performance tends to improve over
generation, while the topology ensures wideband operation
against process variation. The model fSO is about 40GHz,
and the estimated sensitivity curve slope |∂Ai(fin)/∂fin| is
about 11.6mV/GHz. For a 0.5V peak-to-peak input, the divider
will operate up to 2 × fSO+21.6GHz=101.6GHz.

To maximize the divider high-speed performance, relaxed
2× gate-to-contact pitch FETs are used with dual gate con-
nections. The gm gain from the pitch relaxation is about 6.7%,
while the gds also increases, so that the self gain is reduced.
Still the NFET fT is enhanced by 15.2% [23], and the layout
optimization is useful to boost the circuit design margin. The
pitch relaxation does increase circuit area by about 41%,
but it is still small compared with passive components and
interconnects. The FET sizes are WD=10 and WN =8µm, and
the differential pair must be stronger than the negative gm pair
to overwrite latch.

A poly resistor of about 200Ω is used instead of a PFET load
to reduce the output node vO parasitic loading. An inductive
load can be used to cancel out capacitance [18], [33], and to
improve high-speed performance, which would increase circuit
footprint. The BEOL VNCAP was used for AC coupling [25],
[26]. The VNCAP implementation is highly compatible with
digital CMOS technology, and requires no additional mask
sets. Also capacitance density and qualify factor is comparable
to MIM capacitors. To reduce substrate coupling, the lowest
metal layer was avoided. It reduces the capacitance density,
but the Q-factor should be higher slightly. The Q-factor is
limited by the minimum feature metal layers (1×) due to line
resistance, and twice width (2×) metal staggered capacitance
has lower metal resistance. The VNCAP area is 10×10µm2,
and estimated capacitance is about 200fF. The VNCAPs were
also used to decouple the power supply connections around
the circuit. For testing, a pair of 150µm-pitch RF+DC wedge
probe padsets were placed in the layout. The divider core area
is about 40×40µm2.

D. Simulation

Differential signals are directly applied to the tail gate
without AC coupling and resistor. Signal DC level is used
as VBIAS . The output is terminated with a bias-tee so that
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IL and SO modes. The upper curves show the divider output frequency and
the lower curves are relative frequency error. The divider is in IL mode when
the error is below a preset 1% threshold level. As predicted in the model,
the Ai-downward sweep makes a step-like frequency transition at C, while
upward sweep smoothly moves to IL mode from SO at D. (b) Frequency
sweep hysteresis simulation at 0dBm input power. The frequency-increasing
sweep makes a sudden transition at E, as described in the model, and the
frequency-decreasing sweep makes a gradual transition at F.

only AC components are visible at the output. After extracting
the zero-crossing timing, and comparing the period with
input frequency, the divider IL or SO mode is determined.
Before obtaining divider SC, amplitude and frequency sweep
hystereses are observed with in Fig. 9. The error threshold
level is 1% of input frequency to determine the divider mode.
The amplitude sweep was performed at 80GHz. As modeled in
III-A, the input signal amplitude upward Ai,up and downward
Ai,dn sweeps show different threshold levels. The Ai,up needs
more signal power to lock to input, and Ai,dn maintains IL
mode for lower input power. The ratio between the Ai,up and
Ai,dn is considered as an amplitude-direction hysteresis gain
Hamp, so that the divider can operate with lower input level
when the initial condition is IL mode. Similar phenomenon
is observed with frequency sweep in Fig. 9(b). The frequency
operation range is effectively extended by ∆fhys,in, when the
frequency and amplitude conditions begin from the IL mode.

As discussed, there are two SCs, one for upward Ai,up and
the other for downward Ai,dn as plotted in Fig. 10(a). The
amplitude hysteresis is noticeable at the high frequency, and
therefore it extends the divider operation range. As expected,
the hysteresis transition depends on the sweep speed, step size,
and number of repetition. An example is plotted in Fig. 10(b).
In the plot, the upward- and downward- amplitude and the
frequency-increasing and decreasing sweeps are overlaid. The
hysteresis-assisted operation extension range overlaps, but they
are not exactly same. There are simulation errors since the
hysteresis behavior is subject to simulation sweep setup. The
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frequency sweep gain is more important since a VCO makes
frequency-direction sweeps for PLL locking.

Using separate DC tail control, the divider can adjust the
fSO and bandwidth. While the operation bandwidth decreases
as VBIAS increases, still it is a useful technique to broaden the
effective operation range. The VBIAS sweep with Ai,dn SC is
in Fig. 11. It shows the divider SC in 3-D. By obtaining the
minimum input power level that the divider operates at each
frequency across VBIAS conditions, an effective operation
range is obtained in Fig. 11(b). With VBIAS tuning, the divider
can accept low-level power over wide range. For example, it
operates from 32 to 76GHz, or a 44GHz bandwidth at -10dBm
power level.

IV. MEASUREMENTS

The divider measurements, variation, and statistical scalable
characterization are discussed. The test setup is introduced
in IV-A. The divider performances and FoM are compared
in IV-B with hysteresis and bias tuning. Divider performance
variation, benchmark, and statistical scalable divider charac-
terization are discussed in IV-C.

A. Test Setup

A typical test setup photograph and a diagram are in
Fig. 12. The difficulty of mmWave CML divider test originates
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Output
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(a)

Fig. 12. (a) Divider test setup photo. The W-band waveguide limits below-
65GHz low-frequency range access. (b) Test setup diagram. The input signal
power is calibrated with a power meter at the magic tee input. Signal loss
in the W-band connection makes it difficult to estimate the actual power that
reaches the circuit input. Phase shifter needs to be adjusted at each frequency
for better divider performance.

Divider core

VNCAP

4
0

m

40 m

100 m
(b)(a)

Fig. 13. Divider chip die photos taken at (a) top metal (M10) and (b) fourth
metal (M4) levels. Two 150-µm pitch wedge probe padsets are used for RF
and DC connections. Small dots are inter-metal vias, and bright squares are
BEOL VNCAPs for AC coupling and power supply de-couplings.

from high-frequency input, setup signal loss, and differential
input. A 6× frequency multiplier is used to generate W-
band frequency, from a 50GHz signal source. It is leveled
greater than 10dBm by a W-band amplifier. The signal is
attenuated for divider experiment, and it is split into two
paths with a magic tee. Phase shifters adjust signal phases to
make differential inputs. After exiting waveguides, differential
signals go through 1mm cables and 110GHz wedge probes.
The input power is calibrated at the output of the attenuator,
and it is not trivial to estimate the real power at the circuit
input. The setup is not appropriate for frequency sweep SC,
since the phase shifter introduces uncertainty.

B. Measurement

The divider was fabricated in 65nm SOI CMOS as shown
in the die photograph in Fig. 13. The divider output frequency
is captured and compared with the input signal through spec-
trum analyzer. To determine the divider IL and SO modes

63220-4-6
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TABLE II
CML STATIC DIVIDER PERFORMANCE

VDD 1.5 1.5 1.8 2.2 2.4

VBIAS 0.5 1.5 1.8 2.2 2.4

Power (mW) 15.8 23.2 35.2 53.5 64.9

fSO,out (GHz) 32.3 37.0 39.7 41.5 43.0

Avg. Hamp (dB) 0.74 0.46 0.55 0.46 0.44

fdiv,max (GHz) 82.3 87.2 92.7 91.2 94.4

accurately, the phase noise of input and output should be
compared. In practice, the spectral purity of the divider is
observed. Three upward and downward amplitude sweeps are
measured and averaged at each frequency, and the upward
and downward SCs are plotted in Fig. 14. Several different
VDD and VBIAS combinations were used to obtain the plot,
and their performances are arranged in Table II. In case
of VDD=1.5V and VBIAS=0.5V, the average hysteresis gain
Hamp between upward and downward SCs is about 0.74dB.

The divider performance comparison has been done with
the maximum divider operation frequency fmax,div , divider
bandwidth, and the power-delay product [34] in Fig. 14(b).
As described in the mmWave test setup, the actual power at
the circuit input is not readily available, and it is obtained from
test equipment signal loss estimations. The input power level in
each paper is different depending on the setup and calibration.
Still they are considered as best-effort measurements. Table III
shows FoM comparison with fmax, power-delay product [34],
SC slope (mV/GHz), and bandwidth over fSO ratio [28].
When a divider has wide operation range, the SC slope
|∂Ai/∂f | tends to have lower value, and the bandwidth to
fSO ratio ∆f/fSO becomes larger. While the table provides
perspectives on the design, a new FoM that considers the setup
power level uncertainty should be developed.

TABLE III
CML STATIC DIVIDER FOM

Ref. Tech. fmax
P

8fmax
|∂Ai/∂f | ∆f/fSO

(GHz) (pJ) (mV/GHz) ratio

[31] InP 143.6 78.3 79.8 1.392

[34] SiGe 72.8 94.4 91.7 1.841

[19] 90nm 66.0 96.6 83.3 1.271

[18] 65nm 100.2 63.2 282.0 0.256

This 65nm 82.3 24.0 85.0 0.545

work 65nm 94.4 85.9 282.6 0.215
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Fig. 15. Divider statistical simulation and measurement. (a) Simulation of
divider cut-off frequency at 0dBm with different VBIAS . Total 500 Monte
Carlo points are used. The fin increase and decrease sweeps are simulated,
and the output is analyzed to obtain at which frequency a divider switches
to SO from IL mode. There are strong correlations between fSO and cut-
off frequencies. (b) Divider active current IA and fSO at several VBIAS

settings. They show good correlations. The data were obtained from 73 chip
sites in a 300mm 65nm SOI wafer, whose mappping is at the bottom right.

C. Scalable Statistical Characterization

The sub-100nm CMOS variation is one of the motivations
for wideband CML static divider as discussed in II-A and
Fig. 3. It is necessary to measure divider variation to estimate
yield, while just one SC measurement is time consuming,
and its automation is difficult due to the nonlinearity. The
(6) states that a SC is defined when we have circuit design
and DC parameters, and fSO as a RF parameter. Therefore,
the divider SC performance is reliably estimated with DC
measurements and fSO, assuming a good model-to-hardware
correlation (MHC). With this estimation method, the statistical
characterization of a divider becomes scalable.

The estimation begins with Monte Carlo simulations on the
divider bandwidth as plotted in Fig. 15(a) and DC parameters,
such as active and quiescent currents IA and IQ. The plot
suggests that the fSO reflects the frequency direction cut-off
frequency well. Also IA and IQ are useful to enhance the
estimation accuracy. An estimator is trained with the simulated
cut-off frequency, IA, IQ, and nominal SC. Then hardware
results, such as IA and fSO data in Fig. 15(b), are used to
scale and to offset the estimator for MHC. The divider SC
estimation from scalable DC and fSO measurements is verified
by sampling divider sensitivity thresholds at 65 and 70GHz
with 73 dividers in a 300mm wafer as shown in Fig. 16(a).
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Fig. 16. Divider statistical measurement and estimation. (a) Divider estima-
tion errors at 65 and 70GHz. Overall RMS error is 55% of standard deviation.
(b) Divider yield calculation for input power and frequency. Yield is obtained
from the scalable statistical measurements. (c) Yield plot slice at 0, -5, -10dBm
inputs. The divider operates up to 82.4GHz at 0dBm with 90% yield.

Whole SC curve measurements on all chip sites are too time
consuming, and do not add much information. The estimation
RMS error is about -2.2dB of 1-σ standard deviation. Using
the estimator, the dividers statistical yield for input power and
frequency is calculated in Fig. 16(b). For example, the divider
will have 90% yield for a 0dBm input at 82.4GHz, as plotted
in Fig. 16(c).

V. CONCLUSION

The wideband CML static divider design and measurements
in 65nm SOI CMOS were presented. Circuit analysis provided
design equations, evaluation metrics, and scalable statistical
method. The wideband divider overcomes the process vari-
ability in sub-100nm CMOS technology, and therefore useful
as a prescaling frequency divider in mmWave PLL front-end.
The scalable statistical measurements proved that divider’s
wideband capability enables high-yield operation.
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