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ABSTRACT

In recent years, synthetic aperture radars (SARs) have been used to detect man-made targets and to distinguish them
from naturally occurring background. This paper continues development of a fundamental, physics-based approach
to assessing the performance of SAR-based automatic target recognition (ATR) systems. A major thrust of this effort
is to quantify the performance advantages that accrue when the recognition processor exploits the detailed signatures
of the target’s component reflectors, e.g., their specularity, their polarization properties, etc. Its purpose is to assess
target classification performance of a SAR-based ATR, starting from a foundation of rigorous, physics-based signal
models developed from the electromagnetic scattering theory. New lower and upper bounds on the probability of
correct classification (PCC) are developed for targets composed of a constellation of geometrically-simple reflectors.
The performance discrepancy of a conventional full-resolution processor with respect to an optimal whitening-filter
processor is discussed.
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1. INTRODUCTION

In recent years, SAR has been rapidly gaining prominence in applications such as remote sensing, surface surveillance,
and ATR. A SAR-based ATR system requires a fast and effective discriminator to suppress natural clutter, to detect
the presence of a target, and to classify the type of target from its radar return.1 Such a system relies on the models
for different components of the radar return, namely, the returns from different types of man-made targets, natural
clutter, and background noise. Our analysis is founded on a rigorous, physics-based theory which relates the radar
return from targets and clutter to their respective physical characteristics through an electromagnetic scattering
model, taking into account the effects of the transmitter pulse shape, the antenna beam pattern, and free-space wave
propagation.2–4

Radar return signals from a target and from clutter sources are modeled via an electromagnetic scattering theory,
and a conventional and optimum whitening-filter signal processors are considered. In what follows the radar signal
models and the SAR processor models are reviewed. With these models, we show how the optimum multi-component
target classification is done, based on a maximum aposteriori probability (MAP) rule. Then we focus on a target
setting in which each target component can be located anywhere consistent with an orthogonality condition. We will
find easily computed lower and upper bounds on the PCC. In a similar fashion, we deal with a case in which the
target components are located at uniformly-distributed random positions within given uncertainty areas.

2. SYSTEM MODELS

2.1. Radar Signal Model

Yeang3,4 used a first-principles approach to set up signal models of SAR imagery via an electromagnetic scattering
theory. We are interested in quantifying, from a fundamental-principles viewpoint, the target-classification perfor-
mance advantage of the whitening-filter processors compared with that of the conventional SAR imagers. Thus
the multi-component target models we shall employ will not be as complicated as real-world objects. Instead they
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will be simple reflector constellations that embody the characteristics which will highlight the performance differ-
ences between the conventional SAR full-resolution processing and the optimum whitening-filter-based processing.
In particular, the targets will consist of specular mirrors (square flat plates with perfectly conducting surfaces), and
dihedrals (pairs of perfectly-conducting rectangular plates whose edges meet at right angles). The PCC bounds that
we develop can, for the most part, be extended to treat other reflectors, such as trihedrals and dielectric volumes.
In addition to the target return, the clutter needs to be modeled. Clutter typically refers to the radar return from
anything other than the desired target. We will assume the clutter to be a reflection from an infinitely extended
rough ground surface. The final element in the radar signal model is the receiver noise. Typically, this is a thermal
noise, and has a white spectrum. The receiver noise is assumed to be a zero-mean, circulo-complex, vector-Gaussian
stochastic process that is white in all domains. We deal with stripmap-mode operation throughout the paper; the
change of modes does not affect our analysis of classification performance.

2.2. SAR Processor Models
Conventional processor:

Figure 1 illustrates a conventional full-resolution processor for stripmap-mode operation; the incoming radar return
is passed through chirp compression filters in both the cross-range and the range domains, and then is detected to
form a radar intensity image. The sampling times, m and τ , correspond to the center location of a target reflector
in a cross-range-time and range-time domain, respectively. An adaptive-resolution processor can be built upon this
conventional SAR architecture by using adjustable processing durations in the chirp compression filters.
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Figure 1. Block diagram of conventional stripmap-mode SAR processor for detecting a single reflector at a known
location

Whitening processor:

The optimum Neyman-Pearson processing scheme for detecting a single reflector at a known location uses a filter
to whiten the clutter-plus-noise, followed by a matched filter corresponding to the target-return waveform passed
through the whitening filter, followed in turn by the video detection, sampling, and a threshold test. The whitening-
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Figure 2. The whitening-filter optimum processor for detecting a single reflector at a known location

filter processor, shown in Figure 2, is seldom as practical as the conventional processor because it requires exact
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knowledge of the clutter and the noise statistics, and the waveforms scattered from the target types of interest.
Nevertheless, the whitening-filter processor is conceptually important because it is the optimum processor for target
classification. As such, its performance in terms of probability of correct classification bounds the performance of
any realizable processor. By comparing the classification performance of a conventional processor with that of a
whitening processor, we can determine how far the conventional processor’s classification performance is from the
ultimate theoretical limit.

2.3. Multi-component Target Classification

A multi-component target is a collection of simple reflectors located at different positions. The radar-return signal
from a multi-component target is the sum of the contributions from all the individual scatterers. Multiple scattering
between different reflectors is neglected. A multi-component target classification problem is formulated in the follow-
ing manner. Let r(m, τ) be the radar return from a multi-component target after passing through a whitening filter.
Therefore, it has the unwanted clutter-plus-noise component whitened to unity spectral density. We use the boldface
symbol to denote the fully polarimetric return signal (HH, VV, and HV where the vertical polarization aligns with
the aircraft flight direction). Then, if Hi denotes that target i among all N possible targets is present, r(m, τ) can
be written as follows:

under Hi : r(m, τ) =
Mi∑
p=1

eiφpi spi(m−mpi , τ − τpi) + w(m, τ) for i = 1, ..., N. (1)

Here w(m, τ) is the vector clutter-plus-noise complex envelope after the whitening filter. By construction it is white in
the cross-range-time (m), the range-time (τ) and the polarimetric (vector) domains. Likewise, spi(m, τ) corresponds
to the post-whitening-filter radar-return complex envelope from the p-th component of the i-th target when the
component is located at the scene center. The time delays mpi , τpi for this component are determined by its actual
location. The phases {φpi} are independent random variables that are uniformly distributed within [0, 2π); they
represent the incoherence of each target-component with respect to other components as well as the noise. When the
spatial separations between the individual target components are large enough, the following orthogonality condition
prevails:

∞∑
m=−∞

∫ ∞

−∞
dτ s†i (m−mi, τ − τi) · sj(m−mj , τ − τj) ≈ 0 (2)

for any two components located at different positions.

We can develop a target classifier for a repertoire of multi-component targets based on the single-target detectors.
Based on a MAP rule, a single-target detector can be constructed by passing the radar-return signal through a
bank of matched filters (matched to all target reflectors) and then combining the outputs from the matched filters.
Specifically, the likelihood ratio for MAP target detection is

l1(r) =
pr|H1(r1, r2, ..., rM |H1)
pr|H0(r1, r2, ..., rM |H0)

=
M∏

m=1

exp[−Em]I0(2|rm|) (3)

where hypothesis H0 means the target is absent, H1 means the target is present, Em is the energy of the m-th
component return, and I0 is the zeroth-order modified Bessel function. Here, r is the vector of the matched-filter
outputs sampled at the proper times; it has the complete information about the whole radar return signal needed
for the classification operation. At the target detector’s output stage, a value equal or proportional to the likelihood
ratio is compared with a threshold level in order to decide on the absence or presence of that target. When there is
more than one possible target type, we can pass the radar return through a bank of target detectors, one for each
target type. The resulting real-valued output levels l1, ..., lN are the likelihood ratios of conditions H1, ..., HN with
respect to condition H0 (clutter and noise only). To carry out classification, we select their maximum value; if lp is
maximum among l1, ..., lN , then the classifier decides the target to be type p.

A conventional SAR target classifier can also be constructed by combining the corresponding conventional SAR
target detectors in the similar manner.
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3. TARGET WITH KNOWN REFLECTOR POSITIONS

3.1. Classification Scheme

Evaluation of the performance of multi-component target classification is computationally intensive, because the
likelihood values of different multi-component targets are densely correlated in general. Within the scope of this
paper, we assume that each target component can be located anywhere provided the orthogonality condition (2)
holds. For the upper bound and the lower bound on the PCC developed in this section, the target components
are assumed to be fixed at known positions, and the phase of the target signal from each component is randomly
distributed in a uniform fashion, which represents the unavailability of accurate relative phase information between
the various components of a multi-reflector target. The radar return model under this target condition is specified
by (1) and the time delays corresponding to the target component locations (mpk , τpk) are presumed known. The
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Figure 3. Block diagram of likelihood-ratio detector for a target with unknown reflector phases

block diagram of the likelihood-ratio target detector is shown in Figure 3. To build a target classifier we employ
a bank of likelihood-ratio (LR) detectors with one slight modification. After each Bessel-function operation in a
target detector, we need to normalize the output value by exp(−Epi) where Epi is the output energy of target i’s
component pi. The normalized output is a likelihood ratio, li, of condition Hi with respect to condition H0. To
carry out classification, we do not pass the {lk} through individual threshold comparators, but select the maximum.

3.2. Lower Bound on the PCC

A lower bound on the PCC can be calculated by finding PCC for any sub-optimal classifier. For a sub-optimal
classifier, we will use a component-wise detection rule. Suppose that the components are mutually orthogonal and
that only two reflector types — specular and dihedral — are considered. Then, we can discriminate the reflector
type for each component separately, and use these component decisions as inputs to a (sub-optimum) MAP M-ary
decision rule. We can regard the decision for each target component as establishing a binary discrete memoryless
channel (DMC), with transition probabilities calculated from the model in Figure 4. For a general target setting,
a ternary DMC is employed to incorporate an additional “null” reflector. The detection scheme for three target
reflectors including a “null” reflector is similar to that shown in Figure 4 except we have one additional value, 1
to be compared with the two other outputs from matched filters, i.e., those matched to the dihedral and specular
reflectors. Combining the transition probabilities of the DMC with an M-ary decision rule based on the DMC then
yields an easily calculated error probability from which a PCC lower bound immediately follows. This method of
obtaining a lower bound on the PCC can also be applied to the conventional full-resolution imager.

3.3. Upper Bound on the PCC

Obtaining an upper bound on the PCC is equivalent to finding a lower bound on the error probability. If the reflector
phases were exactly known and optimally employed, then the error probability would not be higher than the case
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Figure 4. Upper panel represents a target classifier for three-component targets based on component-wise detection.
Lower panel shows a model for a discrete memoryless channel.

in which the phases of all components are random. Given exact phases, the classification problem simply becomes
an M-ary detection of the signals in an additive white Gaussian-noise channel. In general, the error probability of
detection of M signals over the additive white-Gaussian noise channel is not available in a closed form. Thus, we
again use a lower bound on this error probability.

PCC =
N∑

i=1

Pr(say Hi | Hi true) Pr(Hi) (4)

=
N∑

i=1

{1 − Pr(error | Hi true)}Pr(Hi). (5)

Pr(error | Hi true) ≥ Pr(error | Hi true, phase information given) (6)

= Pr(
⋃
j �=i

Eij | Hi true, phase information given). (7)

Here Eij denotes the case {‖s′ − sj‖ ≤ ‖s′ − si‖} where s′ is a matched-filter-output vector, matched to all distinct
target-components, and properly normalized to make the noise part circulo-complex Gaussian with unit-variance. si

is the mean of s′ when the target i is present. The prior probability of target i, Pr(Hi), will be assumed to be 1/N ,
i.e., all targets will be assumed equiprobable.

De Caen’s inequality5 can be used to get a lower bound on the probability of a union:

Pr(
N⋃

j=1

Aj) ≥
∑

j

Pr(Aj)2∑
k Pr(Aj ∩Ak)

. (8)

Applying this inequality to the probability of error, we obtain

Pr(error | Hi true, phase information given) ≥
∑
j �=i

Q2 (dij /2 )∑
k �=i Ψ(ρjk , dij /2 , dik/2 )

(9)

where
dij = ‖si − sj‖, ρjk =

< si − sj , si − sk >

‖si − sj‖‖si − sk‖ , Q(x) =
1√
2π

∫ ∞

x

exp(−y2/2)dy,
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Flight Parameters Radar Parameters Reflector Parameters
aircraft altitude L = 5000 m antenna radii ax = ay = 1 m target radii ρt = 1.5 m
aircraft speed v = 100 m/s Tx and LO powers PT = PLO = 1 W relative permittivity εr = 10 + i5

slant angle ψ = 45◦ radar frequency fc = Ωc/2π = 10 GHz HV clutter strength ε = 0.2
pulse-repetition period Ts = 10 ms HH×VV correlation ρ = 0.57

pulse width T0 = 0.05µs
chirp bandwidth W0 = 100 MHz

Table 1. Parameter values for signal-to-noise-plus-clutter calculations

Target 1 Target 2 Target 3
Component 1 type / center location specular / (0 m, 0 m) specular / (0 m, 0 m) specular / (0 m, 0 m)
Component 2 type / center location specular / (-7 m, -3 m) specular / (-7 m, -3 m) dihedral / (-7 m, -3 m)
Component 3 type / center location specular / (5 m, -5 m) dihedral / (5 m, -5 m) dihedral / (5 m, -5 m)

Table 2. Specification of target constellation for the example. Note that the orientation angle of all specular
reflectors (the angle between the slant range and the normal direction of the plate) is 0◦, and the orientation angle
of all dihedral reflectors (the angle between the SAR flight path direction and the dihedral axis) is 45◦. The side
lengths of all target components are 0.5 m.

Ψ(ρjk, dij/2, dik/2) =
1

2π
√

1 − ρ2
jk

∫ ∞

dij/2

∫ ∞

dik/2

exp(−x2 − 2ρjkxy + y2

2(1 − ρ2
jk)

)dx dy.

This inequality deals with only two joint Gaussian random variables, and we have all the constants needed for its
evaluation, namely, the distances between all signal points. The error probability bound is thus easy to calculate.
Like the lower bound on the PCC, this upper bound can be applied to all processor models and both SAR operation
modes.

For the following examples, we will use the radar geometries and the radar parameters specified in Table 1.
These values are not far from the specification of a real system.6 Figure 5 compares the bounds on the PCC of the
conventional classifier to the PCC of the optimal whitening-filter classifier for the 3-component target constellation
specified in Table 2. PCC values are plotted with respect to the clutter-to-noise ratio (CNR). The quantity 1/CNR
measures the intensity of the noise with respect to a fixed clutter level. As the noise level increases, the two lower
bounds converge asymptotically to 1/3, which is the appropriate result: when the noise intensity is very high, the
classification operation simply becomes a blind guess. The PCC results from a 5000-trial computer simulation are
also plotted. The simulation results turn out to be very close to the lower bound. We can see that the optimal
classifier has a gain of about 6 dB in the value of the signal-to-noise-plus-clutter ratio (SNCR). There are three
factors that lead to the whitening-filter processor’s performance advantage over the conventional SAR processor’s
performance: the effect of the whitening filter, the polarimetric effect, and the adaptive-resolution effect. Because
the conventional processor makes use of only a single polarization (HH) whereas the whitening-filter processor takes
full advantage of all polarimetric components, the whitening-filter processor has a 3 dB enhancement of its SNCR
value. The additional (approximately) 3 dB gain of the whitening-filter processor comes from the adaptive-resolution
effect and the whitening of clutter plus noise.

To highlight the difference between the PCC lower bound developed in this paper and the one in previous work
by Yeang,3 we first compare his PCC lower bound for the example shown in Figure 5,

PCC ≥ 1
3

(Q2
1 +Q1Q2 +Q2

2), (10)

to our PCC lower bound
PCC ≥ 1

3
{max(Q2

1, Q
2
2) +Q1Q2 + min(Q1, Q2)}. (11)
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Figure 5. PCC for whitening filter processor and conventional processor

Here, Q1 ≡ Pr(say specular | specular is true), and Q2 ≡ Pr(say dihedral | dihedral is true) are the transition
probabilities of the DMC. It is easy to see that the PCC lower bound developed in this paper (11) is always tighter
than Yeang’s lower bound (10). Figure 6 plots these PCC lower bounds, Yeang’s upper bound, our upper bound, and
the results from a 5000-trial computer simulation. We observe a few features in Figure 6. First, the new lower bound
derived in this paper converges to the true PCC value of 1/3 as CNR goes to 0, whereas Yeang’s lower bound is
substantially lower in the high-noise regime. Second, Yeang’s upper bound is tighter than the upper bound obtained
in 3.3. We must note, however, that Yeang’s upper and lower bounds rely on the special symmetries of the target
reflector constellation presented in this example, whereas our bounds can be applied to any target setting which
obeys the orthogonality condition. In the following example, we will obtain the lower bound and the upper bound
on the PCC of a whitening-filter-based classifier for a target component setting which cannot be handled by the
previous approach.

3.4. Example

In this 4-target example, each target consists of 10 reflectors with different locations, orientations, sizes and types
as specified in Table 3. The upper and lower bounds on the PCC previously developed are calculated for this target
constellation. Figure 7 plots the PCC bounds versus the inverse of the CNR for both the conventional classifier
and the optimal whitening-filter processor when both have perfect knowledge of target location. Also included in
this figure are PCC results obtained from 50000-trial computer simulations of these two processors. Figure 7 shows
that the PCC lower bound for the whitening-filter processor is close to its simulation result. For the conventional
processor, the simulation shows that the PCC approaches a sub-unity, clutter-limited value in the limit of zero noise,
i.e., when 1/CNR → 0. Figure 7 also shows that the whitening-filter classifier has about 5 dB gain in terms of
the SNCR as compared with the conventional processor. This advantage is due to the combined benefits accruing
from whitening-filter processing (which optimally suppresses clutter), full polarimetric processing (which only the
optimal processor was presumed to have), and adaptive-resolution processing (which the optimal system uses to
exploit physics-based signatures of the various reflector components).

4. TARGET WITH UNCERTAIN REFLECTOR POSITIONS

4.1. Classification Scheme

In this section, we explore the classification of the targets with uncertain reflector positions. Incorporating the
position uncertainty of the reflector components, the radar return for each hypothesis is modeled in the same form
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Target 1 Target 2 Target 3 Target 4

x, y θ, φ ρ t x, y θ, φ ρ t x,y θ, φ ρ t x,y θ, φ ρ t

2.5 -0.2 -90 45 5 S -2.7 -0.7 -88 46 4 S 2.5 -0.2 -90 45 5 S -2.7 -0.7 -88 46 4 S

0.6 -0.5 -91 45 4 S 0.6 -0.5 -91 45 4 S 0.3 1.4 -90 43 10 D 0.6 -0.5 -91 45 4 S

-2.0 -1.5 -90 45 9 S -0.2 -0.5 -88 47 16 D -0.2 -0.5 -88 47 16 D -0.2 -0.5 -88 47 16 D

-1.0 0.6 -90 44 15 S -0.6 -1.0 -93 43 6 D 2.0 1.0 -90 45 16 S 2.0 1.0 -90 45 16 S

-2.5 -0.8 -90 43 5 D -2.5 -0.8 -90 43 5 D -1.2 1.3 -88 44 10 S -2.5 -0.8 -90 43 5 D

1.2 -1.6 -93 44 8 S 1.2 -1.6 -93 44 8 S -1.5 1.0 -90 45 13 D 1.2 -1.6 -93 44 8 S

3.0 -1.5 -90 45 16 S -0.7 -0.1 -85 43 19 D -0.7 -0.1 -85 43 19 D 3.0 -1.5 -90 45 16 S

0.6 -0.7 -93 43 6 D 2.7 -1.0 -89 46 13 S 2.7 -1.0 -89 46 13 S 0.6 -0.7 -93 43 6 D

1.5 -1.0 -92 45 8 S 0.2 -1.5 -90 49 9 D 1.5 -1.0 -92 45 8 S 0.2 -1.5 -90 49 9 D

-0.6 1.4 -90 44 15 S 1.2 -1.3 -85 45 5 D -1.3 -1.0 -87 42 18 D -1.3 -1.0 -87 42 18 D

Table 3. Specification of target constellation for the example. Note that (x, y) is the center location (in m), θ, φ are
polar and azimuthal angles (◦), and ρ is half the side length of a reflector (in cm). “S” and “D” in columns denoted
by “t” stand for specular and dihedral reflector, respectively.

as that in (1) except the center locations (mpk , τpk) of the target components are no longer fixed and known. The
random variables mpk , τpk are assumed to be mutually independent and each random variable is uniformly distributed
within [m0

pk −Mpk/2,m0
pk +Mpk/2] for mpk and [τ0

pk − Tpk/2, τ0
pk + Tpk/2] for τpk . The position randomness models

the variability or unavailability of the exact knowledge about some aspects of a target reflector constellation in the
real world.

Because the delay times are uniform random variables, it is difficult to write down the likelihood ratio of two
different hypotheses. We can, however, formulate the generalized likelihood ratio and develop a target classifier on
that basis. For a specific realization of the delay times, the likelihood ratio of hypotheses Hk (target k) with respect
to the null hypotheses H0 (clutter plus noise only) is:

lk(r;m1, ...,mMk
, τ1, ..., τMk

) =
pr|Hk

(r1, r2, ..., rMk
|Hk;m1, ...,mpk , τ1, ..., τMk

)
pr|H0(r1, r2, ..., rMk

|H0;m1, ...,mpk , τ1, ..., τMk
)
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=
Mk∏
p=1

exp(−Epk)I0

(
2

∣∣∣∣∣
∑
m

∫ ∞

−∞
dτs†

pk(m−mpk , τ − τpk) · r(m, τ)

∣∣∣∣∣
)
, (12)

where Epk is the energy of p-th component of k-th target. For a given radar return r(m, τ), the likelihood ratio is a
function of m1,...,mMk

,τ1,...,τMk
. The maximum-likelihood estimate of these parameters from the radar return is:

[
m̂1...m̂Mk

τ̂1...τ̂Mk

]
= arg max

Mk∏
p=1

exp(−Epk)I0

(
2

∣∣∣∣∣
∑
m

∫ ∞

−∞
dτs†

pk(m−mpk , τ − τpk) · r(m, τ)

∣∣∣∣∣
)

(13)

where m̂1, ..., m̂Mk
, τ̂1, ..., τ̂Mk

are the maximum-likelihood estimates over m1 ∈ [m0
1−M1/2,m0

1 +M1/2], ...,mMk
∈

[m0
Mk

− MMk
/2,m0

Mk
+ MMk

/2] and τ1 ∈ [τ0
1 − T1/2, τ0

1 + T1/2], ..., τMk
∈ [τ0

Mk
− TMk

/2, τ0
Mk

+ TMk
/2]. The

generalized likelihood ratio is defined as the likelihood ratio when the unknown parameters are replaced by their
maximum-likelihood estimates. Plugging (13) into (12), we have that:

GLR = lk(r; m̂1, ..., m̂Mk
, τ̂1, ..., τ̂Mk

)

= max
Mk∏
p=1

exp(−Epk)I0

(
2

∣∣∣∣∣
∑
m

∫ ∞

−∞
dτs†

pk(m−mpk , τ − τpk) · r(m, τ)

∣∣∣∣∣
)
. (14)

The generalized-likelihood-ratio detector based on (14) can be written in the following form:

max
Mk∏
p=1

[
I0

(
2

∣∣∣∣∣
∑
m

∫ ∞

−∞
dτs†

pk(m−mpk , τ − τpk) · r(m, τ)

∣∣∣∣∣
)] say Hk

>
<

say H0

β (15)

where β is the threshold and the maximum is over the same domain as that in (14). Furthermore, because the zeroth-
order modified Bessel function is monotonically increasing and m1, ..., mMk

, τ1, ..., τMk
are mutually independent

variables, maximizing the overall product of I0’s in (15) is equivalent to maximizing the individual I0’s in the product.
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Hence the generalized-likelihood-ratio detector becomes

Mk∏
p=1

max

[
I0

(
2

∣∣∣∣∣
∑
m

∫ ∞

−∞
dτs†

pk(m−mpk , τ − τpk) · r(m, τ)

∣∣∣∣∣
)] say Hk

>
<

say H0

β. (16)

The form of the GLR detector is similar to the LR detector discussed in the previous section except that in the
GLR detector the value used to compare the threshold is maximized over the region of the delay-time uncertainty.
This operation can be achieved by inserting a duration-limited peak detector after the video detection of the output
from each individual matched filter. Figure 8 sketches the block diagram of the generalized-likelihood-ratio detector.
A target classifier can be built, as discussed in the previous section, by employing a bank of target detectors,
incorporating energy corrections, and choosing the largest output level.
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Figure 8. Block diagram of generalized-likelihood-ratio detector for a target with unknown reflector phases and
uncertain reflector positions

In order to calculate the PCC for the M-ary target recognition problem, we need to obtain the statistical structure
of the generalized likelihood ratio. As implied by (16), in order to obtain the statistics of the GLR we must solve the
following general level-crossing problem: for a complex 2-D random process with a given covariance function and a
fixed real-valued threshold level, what is the probability that the magnitude of this random process is smaller than
the threshold level within a given area. When the target is absent or all the components are mismatched to the
detector’s filters, then this random process is approximately stationary. When at least one of the target components
is matched to the detector’s filters, this process is non-stationary. As a result it is best to consider the level-crossing
problems for H0 and Hk (k �= 0) separately.

4.2. Lower bound on the PCC
Paralleling the work in the last section, a component-wise detector can be exploited to obtain a lower bound on the
PCC for the random-position case. Any sub-optimal classifier will be inferior in its classification performance to the
optimum one. Thus, the PCC for a sub-optimal target recognizer is a valid PCC lower bound for an optimum classifier.
Figure 9 depicts the block diagram of a component-wise detector. This detector can be seen to be the optimum target
classifier for two single-reflector (specular or dihedral) targets. We carry out a binary detection for each reflector
component, and then collect the results from each component-wise detector to make a MAP M-ary decision. This is a
valid classification scheme, but not necessarily the optimum one. For our general target setting, the component-wise
detector incorporates a null reflector by choosing the largest output among ls (specular), ld (dihedral) and 1 (no
reflector). To obtain the PCC for this sub-optimal classifier, we only need to know the transition probabilities for the
component-wise detector. Assume the true target component is specular. We have that the transition probability,
Q1 ≡ Pr(say specular | specular is true), satisfies

Q1 = Pr(ls > ld | specular is true) (17)
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= Pr
(
I0(2xs)e−Es > I0(2xd)e−Ed | specular is true) (18)

= Pr
(
xs >

1
2
I−1
0 (eEs−EdI0(2xd)) | specular is true

)
(19)

= 1 − Pr
(
xs <

1
2
I−1
0 (eEs−EdI0(2xd)) | specular is true

)
(20)

= 1 −
∫ ∞

0

dXd pxd|specular (Xd | specular is true) Pr(xs < γ | specular is true) (21)

where γ = 1
2I

−1
0 (eEs−EdI0(2Xd)).

To evaluate the last term, we need to know the probability structure of xs and xd. We treat p(xs | specular is true)
and p(xd | specular is true) separately, because their statistical behaviors are quite different. For xs, the radar return
is passed through a filter which is matched to that of the specular return signal. The maximization process will pick
up the peak value of the magnitude of the post-matched-filter signal within the uncertainty region. If we partition
the uncertainty region into resolution bins and assume that each bin is statistically independent of the others, we
can formulate the cumulative distribution function (CDF) of xs as follows:

Pr(xs < γ | specular is true) = P1
N−1(γ)P2(γ) (22)

where N is the number of bins, P1(γ) is the probability that the magnitude of the stationary whitened clutter-plus-
noise is always less than γ for a given bin area, and P2(γ) is the CDF of the output value from a perfectly matched
signal sampled at the correct position. P1(γ) can be calculated by applying 2-D level-crossing theory, and P2(γ) can
be obtained analytically.

For the xd case, the radar return from a specular reflector is matched to the dihedral signal. Thus, xd will be
stationary over the whole uncertainty region. We can, again, apply the 2-D level crossing theory to obtain the CDF
of xd. Since we know the statistics of xs and xd, we can now evaluate the transition probability Q1:

Q1 = 1 −
∫ ∞

0

dXd pxd|specular (Xd | specular is true)P1
N−1(γ)P2(γ). (23)

We can find Q2 ≡ Pr(say dihedral | dihedral is true) in a similar way. Having both transition probabilities, Q1 and
Q2, we can make an M-ary decision based on the MAP rule and obtain our component-wise lower bound on the PCC
for the case of position uncertainty.

4.3. Upper bound on the PCC

To get an upper bound on the PCC we assume that we have exact phase information for each reflector. Because this
means we have more information for the classification task, the PCC for the optimum receiver in this case will be a
valid upper bound on the PCC in the case of target with random phases, which we are interested in. If we assume
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all target components are orthogonal, we can set the phases to be zero for all target component signals without loss
of generality. Thus the formula for the radar return signal is similar to (1) except that all eiφp terms are left out.
Using this return signal model, the likelihood ratio for the target k with respect to target 0 (the null hypothesis) is:

lk(r;m1, ...,mMk
, τ1, ..., τMk

) =
Mk∏
p=1

exp

(
−Epk + 2�{

∑
m

∫ ∞

−∞
dτs†

pk(m−mpk , τ − τpk) · r(m, τ)}
)

(24)

where Epk is the energy of p-th component of k-th target. It is similar to (12) but does not involve a Bessel function.
The generalized log likelihood ratio (GLLR) for the target k is thus:

GLLRk =
Mk∑
p=1

(
−Epk + 2 max�{

∑
m

∫ ∞

−∞
dτs†

pk(m−mpk , τ−τpk)·r(m, τ)}
)

(25)

=
Mk∑
p=1

(−Epk + 2ypk

)
. (26)

Here, the statistics of ypk can be calculated via level crossing theory. The probability of correct classification can
then be evaluated via

PCC|Hi = 1 − Pr(error | Hi is true) (27)
≤ 1 − Pr(error | Hi is true, phase information given) (28)

= 1 − Pr(
⋃
∀j �=i

{GLLRi < GLLRj} | Hi is true, phase info given) (29)

≤ 1 − max
j �=i

Pr(GLLRi < GLLRj | Hi is true, phase info given). (30)

In the previous section we used de Caen’s inequality (8) to obtain a tighter lower bound on the probability of a
union, which involves the joint probability distribution of two Gaussian random variables. However, for this target
setting, we cannot apply de Caen’s inequality in (29) because the statistics of GLLRi are complicated. The formula
(30) can be calculated without difficulty since we have the statistics for the GLLR’s.

4.4. Example
We obtained the lower and upper bounds on the PCC for the target setting specified in Table 3, but with uncertain
locations. The uncertain areas for the target reflectors were all set to squares with side length of 30 cm. The left panel
in Figure 10 compares the lower and upper bounds on the PCC for the optimum whitening classifier with those for
the conventional classifier. Also included in this figure are the PCC results for these processors obtained via 50000-
trial computer simulations. Figure 10 presents similar features to those seen earlier for the known-reflector-position
example. Thus, although the PCC lower bound for the whitening processor is somewhat looser when compared with
the simulation result, the optimal classifier still has about 5 dB SNCR gain relative to the conventional classifier. Note
that there is a considerable gap, for the conventional processor, between the PCC lower bound and the simulation
result, and neither of these curves approaches unity as 1/CNR → 0 because of clutter. The right panel in Figure 10
compares the whitening processor’s PCC simulations for the cases of known and unknown reflector locations. In this
example, the uncertainty of reflector locations results in a 3–5 dB SNCR penalty.

5. CONCLUSION
This paper describes methods for assessing the target-classification performance of a SAR-based ATR for two specific
target-constellation conditions: targets consisting of a known constellation of reflector components at known absolute
locations and targets consisting of a constellation of known reflector components located at random positions within
some limited, prescribed uncertainty regions. A lower bound on the PCC is obtained from the performance of a
recognition processor that makes component-wise decisions on reflector types, and an upper bound on the PCC is
obtained by assuming that the returns from the target components have known relative phases. Computer simulations
showed that the lower bound is very close to the exact result for the known-reflector-position case. On the whole, for
the examples we considered the optimum whitening-filter processor has approximately 6 dB gain in terms of SNCR
compared to the conventional full-resolution processor. Some of the performance gain might be realized with an
adaptive-resolution processor.
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Figure 10. PCC upper and lower bounds for the target constellation specified in Table 3 and with a location
uncertainty area of 30 cm by 30 cm for each reflector
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