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[1] A novel stochastic algorithm is presented for estimating Atmospheric Infrared
Sounder (AIRS) radiances in the 3.7–15.4 micron spectral band that would be observed
from space in the absence of clouds. This algorithm examines 3 � 3 sets of 15-km AIRS
fields of view, selects the clearest fields, and then estimates a single cloud-cleared
infrared spectrum for the 3 � 3 set using a series of simple linear and nonlinear operations
on both the infrared and companion Advanced Microwave Sounding Unit (AMSU)
microwave channels. These instruments were launched on the NASA Aqua satellite in
May 2002. The algorithm was both trained and tested within 70� of the equator using
global numerical weather analyses generated by the European Center for Medium-range
Weather Forecasts (ECMWF); these analyses were converted to radiances using the
SARTA v1.05 equation of radiative transfer. The RMS differences between the AIRS
4- and 15-micron CO2-band observations and the corresponding ECMWF/SARTA
radiances over nighttime ocean are �0.2–0.3 K for �60 selected channels with weighting
functions peaking at tropospheric altitudes down to the surface for the best 28% of all
soundings selected using only AIRS data. For a larger ensemble of 314 channels the
corresponding range was 0.27–0.40 K. Latitudes 30–70� yielded RMS differences of
0.26–0.78 K over land at night for the same 314 channels. Mean differences were largely
eliminated by training the estimates using independent global observations made on the
same 3 test days, which were spaced over 2 months.

Citation: Cho, C., and D. H. Staelin (2006), Cloud clearing of Atmospheric Infrared Sounder hyperspectral infrared radiances using

stochastic methods, J. Geophys. Res., 111, D09S18, doi:10.1029/2005JD006013.

1. Introduction

[2] One of the primary objectives of the AIRS/AMSU/
HSB experiment [Aumann et al., 2003] is to demonstrate
advanced satellite sounding techniques that can materially
improve the performance of future operational and scientific
numerical weather prediction models. This experiment
involves three instruments: the Atmospheric Infrared
Sounder (AIRS) covering the 3.7–15.4 micron spectral
band with 2378 spectral channels [Pagano et al., 2003;
Gaiser et al., 2003], the Advanced Microwave Spectrometer
Unit (AMSU) covering the 23–191 GHz band with 15
channels, and the Humidity Sounder for Brazil (HSB)
covering the 149– 190 GHz band with 4 channels
[Lambrigtsen and Calheiros, 2003]. Their fields of view
(FOVs) at nadir are �14, 45, and 14 km, respectively. These
instruments were launched on the NASA EOS Aqua satel-
lite on 4 May 2002 into a sun-synchronous polar orbit at
705-km altitude. The limited spectral and vertical resolution
of most prior infrared sounders increased the difficulty of

compensating the observed radiances for the unwanted
effects of clouds, i.e., ‘‘cloud-clearing.’’
[3] The unique contribution of this paper to cloud-clear-

ing methods involves development of a new data-trained
stochastic method for correcting effects of clouds on hyper-
spectral infrared radiances. This contrasts with cloud-
clearing approaches employing physical models for clouds
and radiative transfer. Stochastic methods are computation-
ally extremely efficient and can readily access information
hidden in hundreds of infrared channels. For example, this
statistical information reflects to some unknown degree the
difficult-to-model-physically radiance properties of three-
dimensional cloud assemblies with complex shapes and
hydrometeor distributions. Stochastic Clearing (SC) meth-
ods can increasingly access this information as a result of
technological advances that increase computer power and
the size of training data sets.
[4] Section 2 of this paper introduces the stochastic

method for clearing infrared spectral radiances, section 3
presents representative results, and section 4 discusses the
conclusions.

2. Stochastic Cloud-Clearing of AIRS Radiances

2.1. Overview of Method and Rationale

[5] This stochastic cloud-clearing method utilizes the
observed multivariate statistical relationships between AIRS
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observations and corresponding clear air radiances within
each 45-km AMSU FOV that would have been observed in
the absence of clouds, as predicted using ECMWF analysis
fields plus a rapid radiative transfer program. The radiative
transfer program, SARTAv1.05, is one of an evolving series
tuned to AIRS channels, as described by Strow et al. [2006].
The operational cloud-clearing code described below con-
sists of �100 lines of MatLab script that can cloud-clear an
entire day of AIRS data within minutes on an inexpensive
computer. Future refinements of these simple methods
should yield accuracy improvements and permit extension
to more AIRS channels.
[6] Section 2.2 describes the first step of the algorithm,

which generates a preliminary estimate of the cloudiness for
the 3 � 3 FOV array of interest, and section 2.3 describes
the subsequent steps, which first generate a four-element
vector that characterizes the required radiance corrections
for clouds on all channels, and then generate the cloud-
cleared radiances. Section 2.4 then describes the rationale
for the algorithm.

2.2. Initial Linear Estimate of Radiance Corrections
for Cloud and Surface Effects

[7] At nadir AIRS observes nine �14-km FOVs within a
single AMSU 45-km FOV, which is called a ‘‘golf ball.’’
The stochastic cloud-clearing algorithm produces one set of
cleared AIRS radiances for each golf ball on the basis of
inputs that include (1) the AIRS Level-1B radiances for N
channels of interest, where N is generally more than 300 for
each of nine FOVs; (2) the brightness temperatures for five
AMSU channels sensitive to tropospheric temperatures;
(3) the secant of the instrument scan angle q which is zero
at nadir; and (4) the a priori fraction of land in the golf ball
FOV.
[8] The SC algorithm tested here is diagrammed in

Figure 1 and consists of five main steps: (1) The FOVs to
be used for each golf ball are selected and their radiances
are averaged for each of N channels; (2) an initial linear
estimate of cloudiness is made (operator A); (3) the cloud-
iness estimate is multiplied by the secant of scan angle q and
then, along with the inputs to operator A, this product is fed

to a second linear operator (operator B), which estimates
two brightness temperatures sounding low altitudes that are
used to classify each golf ball as either ‘‘less cloudy’’ or
‘‘more cloudy;’’ (4) a final estimate of four principal
components of the radiance correction spectrum is made
using operator C or D for the less or more cloudy golf balls,
respectively; and (5) this correction spectrum is added to the
average spectrum of the warmest FOVs for that golf ball to
yield the final N cloud-cleared radiances. These steps are
elaborated below.
[9] The nine AIRS FOVs in each golf ball offer nine

opportunities per sounding to avoid or minimize clouds.
Although one FOV is generally the clearest, averaging more
FOVs reduces instrument noise. Brief empirical tradeoffs
led to a policy of using (1) the clearest FOV for channels
having weighting functions that peak below 5 km, (2) an
average of the four clearest FOVs for weighting functions
peaking between 5 and 10 km, and (3) an average of all nine
FOVs for higher altitudes. FOV cloudiness is inferred from
the average radiance observed at eleven 4-micron channels
having nadirial weighting function peak heights 1–3 km;
the warmer FOVs are presumed to be less cloudy. To better
characterize each golf ball the radiances for the most
clouded FOV are also determined, although the resulting
improvement is marginal. Future performance improve-
ments should result from more elaborate FOV selection
and averaging protocols.
[10] Next the N selected infrared radiances for the warm-

est FOV are converted to seven noise-adjusted principal
component scores. Noise-adjusted principal components are
principal components computed for variables that have been
scaled so that the variances of their additive Gaussian noises
are equal; this avoids dominance of the statistics by noisy
variables [Lee et al., 1990]. These seven numbers are fed to
operator A. Also fed to A are the first three noise-adjusted
principal components for the coldest FOV together with the
land fraction, the secant of the satellite scan angle, and the
brightness temperatures for five AMSU channels from 53.6
to 57.5 GHz that sound tropospheric and lower stratospheric
temperatures. AMSU channels 5, 6, 8, 9, and 10 were used;
channel 7 was too noisy. The principal components were

Figure 1. Stochastic cloud-clearing algorithm.
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deduced from large ensembles of AIRS data. These 17
numbers are fed to a linear operator A that estimates the
value of the first principal component for the infrared
radiance correction spectrum. Operator A simply multiplies
the 17-element input vector by the matrix A. The linear
regression matrix A was trained on appropriate global
AIRS/ECMWF data different from that used later for
evaluation. The algorithm for this initial linear estimate of
radiance corrections is diagrammed in Figure 2.

2.3. Final Estimate of Radiance Corrections for
Cloud and Surface Effects

[11] So far only a preliminary radiance correction esti-
mate exists, the scalar output of matrix A. Next a nonlinear
operator computes a parameter that approximates the angu-
lar dependence of the radiance correction factor; it is the
product of the output Ao of operator A and the secant of the
instrument scan angle q. Although separate estimators could
be constructed for each view angle and other angle depend-
ences could be used, this estimator functions well at all
angles and has the advantage of simplicity. Operator B
multiplies linear regression matrix B by the same 17-
element input vector augmented by Aosecq. Operator B
produces estimated brightness temperature corrections for
11- and 15-micron radiances having weighting functions
peaking near 0.47 and 2.95 km for the standard atmosphere
(927.86 and 715.94 cm�1, respectively). The distributions
of these corrections are indicated by the horizontal axis in
Figure 3. All golf balls with brightness temperature correc-
tions for both the 0.47- and 2.95-km channels of less than 2
and 1 K, respectively, are classified as ‘‘less cloudy;’’ the
rest are ‘‘more cloudy.’’ The less cloudy group generally
includes most clear golf balls and some partly cloudy ones.
Initial studies show that similar cloud-clearing performance
is obtained for alternate pairs of similar channels at 4- or 15-
micron wavelength, and that further stratification in cloud-

iness offers limited improvement. Note that if only one of
the two wavelengths were used for cloud classification,
many golf balls would be passed that would fail the other
test; this is evident in the many black dots (rejected golf
balls) in Figure 3 that lie to the left of the threshold lines.
[12] The SC estimation process then begins anew, multi-

plying the same 18-element input vector by either matrixC or
D, depending on whether the golf ball classification is less or
more cloudy, respectively. The outputs of operators C and D
are the scores of the dominant four principal components of
the radiance correction spectrum. This correction is the
estimated difference spectrum between that observed by
AIRS and that computed by applying the SARTA v1.05
equation of radiative transfer to ECMWF atmospheric fields
that have been adjusted in time and space to AIRS FOV
coordinates. MatricesC and D were trained on 519 and 1814
golf balls, respectively, distinct from those tested later.
Training and test ensembles are discussed further in section 3.

2.4. Rationale

[13] The rationale for SC algorithms relies upon the
observed nearly monotonic nonlinear multivariate statistical
relationship between cloudy and cloud-cleared radiances,
provided that at least one of the nine FOVs being examined
is at least partly clear. As discussed later, none of the nine
needs to be completely clear. The nonlinearity introduced
by physics and the non-Gaussian nature of the atmosphere
is accommodated primarily by stratifying the AIRS data
into several categories characterized by different statistics,
and use of a few ad hoc nonlinear operators and iterations.
[14] Although the physical degrees of freedom include

the complex three-dimensional distributions of cloud parti-
cle size, phase, and shape within each FOV, all of which
must be modeled for physical retrieval methods, four
degrees of freedom appear to be sufficient in stochastic
models to characterize the radiance perturbation spectrum.

Figure 2. Operator for selecting and averaging FOVs, and operators A, B, C, and D.
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Although physical methods sometimes characterize FOVs
by the altitudes and fractional coverages of two cloud layers
[Susskind et al., 2003], stochastic models apparently fold
these four degrees of freedom together with others in an
effective but obscure manner. Early SC experiments as-
sumed these four degrees of freedom were linearly related to
radiance corrections, but the approach presented below has
achieved greater success by assuming these relations are
mildly nonlinear.
[15] The SC algorithm presented here accommodates

nonlinearities in three ways: (1) Two simple nonlinear
operators, i.e., less cloudy FOV selection and multiplication
by secq, are inserted before multiplication by the matrices A
and B, respectively; (2) the data are stratified into a few
subcategories (ten here) that utilize different sets of linear
operators A–D; and (3) nonlinear behavior is also produced
by linearly combining radiances that are nonlinearly related
to the desired radiance corrections in unique ways. The ten
categories involve land versus sea, two latitude bands, and
night versus day versus all times; there is no stratification by
scan angle. The land/sea distinction is based on a fixed
geographic database. The division of golf balls into less and
more cloudy categories (operators C and D) reduced errors
while further stratification, such as establishment of a
‘‘clear’’ category, helped but little.
[16] The agreement found here between AIRS and

the corresponding time- and space-interpolated ECMWF
radiances is insensitive to stable biases introduced by the
instrument or radiative transfer computations. This is because
the linear estimators were both trained and tested using global
instrument data obtained from the same 3 days between 21
August and 12 October 2003; thus any bias in training is

automatically compensated when testing. The comparison is
not otherwise statistically ‘‘inbred’’ however, because the
thousands of FOVs used for training and testing are different,
interspersed, and not adjacent, and the radiance corrections
have only four degrees of freedom across the full spectrum.

3. Results: Comparison With ECMWF and
SARTA Radiances

3.1. Validation Data and Strategy

[17] The analysis here primarily explores the precision of
AIRS cloud-cleared radiances since the SC algorithm is
both trained and tested on the same type of data, resulting in
cancellation of multiday global mean errors. The revealed
precision does indicate, however, the utility of AIRS cloud-
cleared radiances for operational numerical weather predic-
tions since mean discrepancies between models and data are
largely removed by existing assimilation procedures. The
validation data used here are space/time-interpolated
ECMWF analysis fields processed using SARTA v1.05 for
radiative transfer. Three full days of global data are ana-
lyzed here: 21 August, 3 September, and 12 October 2003,
the third day being relatively cloudy. Only Level 1B v3.1
AIRS data within ±70� latitude of the equator were used.
[18] For each evaluation approximately half the golf balls

were used for training and half for testing, both sets being
arranged in superimposed noncontacting regular lattices.
Since no testing golf ball was ever adjacent to a training
golf ball, and since both land and clouds have correlation
distances generally less than �100 km, the two sets can be
regarded as largely independent for purposes of evaluating
instrument precision. Systematic variable errors in spectros-
copy, atmospheric modeling, and clearing algorithms are
evident only as unexplained increases in variance, and mean
errors are not revealed.
[19] The ECMWF data consist of temperatures and ab-

solute humidity at the surface and at 60 pressure levels
extending to 0.1 mbar. These analyses were on a 1� grid at
6-hour intervals and were spatially and temporally interpo-
lated to the center of each AIRS golf ball. The ECMWF fields
utilized by SARTA did not incorporate any clouds, aerosols,
or precipitation. The emissivity of both land and sea was
assumed to be characteristic of water, varying between 0.95
and 0.99, depending on wave number [Fishbein et al., 2003].
This assumption of ocean emissivity characteristics over land
should not introduce major errors because (1) the average
errors in the assumed emissivity partly cancel because they
occur both in training and testing and because land was
trained separately, (2) the AIRS observations alone can partly
compensate for surface variations, and (3) dry land has only
minor emissivity variations. Any systematic variation of
surface effects with wavelength enables them to be estimated;
for example, both surface temperature and emissivity can be
estimated using radiance differences between long and short
wavelengths if the surface type is constrained. Furthermore,
as discussed later, variable solar heating and not emissivity
probably dominates land-surface-induced radiance clearing
errors.

3.2. Classification of AIRS Channel Behavior

[20] An early SC experiment involved cloud clearing 827
AIRS channels, including all 4- and 15-micron channels

Figure 3. Initial radiance correction and final D(�K)
relative to ECMWF/SARTA observed at (top) 715.94 cm�1

and (bottom) 927.86 cm�1. Solid dots result from operator B
while the shaded dots result from operator C.
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plus one fifth of the rest. Figure 4 shows the RMS
difference between the SC AIRS radiances and those
predicted by ECMWF/SARTA; the horizontal axis indicates
the altitude at which the temperature weighting function
peaks for a representative atmosphere. In order to minimize
surface and other effects this analysis was restricted to
oceans at night, and latitudes within 40� of the equator.
Three full days of data at all scan angles were analyzed.
Only the least cloudy ‘‘best’’ 22% of all golf balls were
included in the statistics, where cloudiness was determined
by the first principal component of cloudiness produced by
operator B in Figure 1. In general the 4-micron band
exhibits the highest precision in the troposphere, whereas
the 15-micron band excels in the stratosphere.
[21] The discrepancies between AIRS and ECMWF/

SARTA radiances for the window and water vapor channels
vary considerably. Additional processing can partially re-
duce instrument noise for many of the poorer channels, but
such improvements are not utilized here.
[22] Most 4-micron channels exhibit RMS discrepancies

below 0.4 K at all altitudes between �300 m and 40 km.
The larger 4-micron errors and channel absences evident in
Figure 4 near the stratosphere are largely explained by the
Planck function; the 4-micron weighting function widths
broaden for the reversed stratospheric temperature lapse
rates, and channel sensitivities seriously deteriorate at low
tropopause brightness temperatures. The excellent cloud-
and surface-clearing performance below 2-km altitude
results largely from the strong temperature dependence of
the 4-micron Planck function and the ability of multiple
channels with different temperature and aerosol sensitivities
to compensate for partially cloudy FOVs, even in the
absence of large clear ‘‘holes’’ in the atmosphere. The 15-
micron channels with weighting functions peaking below
�3-km altitude exhibit more than twice the variance of

those channels sounding higher altitudes, presumably be-
cause of cloud and surface effects.
[23] Although water vapor channels peaking below 3 km

exhibit RMS discrepancies of �0.7K, the group above �6
km exhibits RMS errors with an arc-like distribution that
peaks distinctly near 8-km altitude and 2K. This arc-like
distribution is even more unambiguous in daytime data,
with RMS discrepancies peaking near 3.6 K. These large
variable errors almost certainly reflect known imperfections
in forecast upper tropospheric humidity fields. Therefore
assimilation of these water vapor radiances into NWP
models would presumably improve water vapor analyses
and forecasts significantly.

3.3. Evaluation of Selected Channels

[24] One of the single most important applications of
AIRS data will involve variational assimilation of AIRS
radiances by operational weather forecasting models. This
section therefore focuses on a set of 314 channels well
suited to this purpose: those exhibiting RMS radiance
discrepancies below 0.5 K.
[25] The SC algorithm of Figure 1 was again employed

over ocean at latitudes less than ±40� using only these 314
channels for all angles and both day and night. The results
are shown in Figure 5 if 100, 88, 67, or 37% of all golf balls
are considered, depending on the acceptance thresholds
used in the cloudy test (see Figure 1). Thus the degradation
is slight if only the less cloudy half of all soundings are
included in the statistics; similar results were obtained for
other global data sets. Since clouds are so prevalent, the fact
that SC works well for roughly half of all soundings implies
that it must be clearing golf balls having few if any FOVs
that are totally clear; this issue is discussed further later.
Note that the agreement would be still better if the perfor-
mance had not been averaged over all channels with

Figure 4. RMS differences (�K) between AIRS brightness temperatures and ECMWF/SARTA
predictions for nighttime ocean within 40� of the equator.
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weighting functions peaking within a given block, where
these channels may include water vapor and window
channels, and the 4- and 15-micron CO2 channels.
Figures 4, 6, and 7, suggest reductions in RMS discrep-
ancies by a factor of �1.5 would result if only the best
50 channels were used instead. Figure 5 also shows that the
effects of clouds become negligible above �8 km, where
the difference between using 37 and 88% of all golf balls
becomes a small fraction of the total RMS cloud-clearing
discrepancies.
[26] Figure 6 shows that for the best 78% of all daytime

oceanic low-latitude (<40�) golf balls the RMS discrepan-
cies for the very best channels are generally �0.2 K for
altitudes of �5–13 km, and degrade to �0.3 K for weight-
ing functions peaking at the surface. These ‘‘best’’ golf balls
were identified using threshold tests like those of Figure 3,

based only on the basis of AIRS data. Figure 7 shows
similar results for the best 28% of all nighttime observations
over land at latitudes 30–70� in both hemispheres. ‘‘Land’’
means that the a priori land fraction within a golf ball
exceeds 80%. These AIRS/ECMWF discrepancies over
land degrade from �0.2 K in the upper troposphere to
�0.55 K at the surface; during daytime the surface discrep-
ancies roughly double to �1.1 K. Surface elevations above
0.5 km were discarded because of lack of adequate retrieval
training data.
[27] More complete performance metrics are presented in

Tables 1 and 2, where the average results for 314 channels
are presented for the same 3 days cited earlier. Each of the
ten categories was trained and tested separately, with over
1000 golf balls being used for training in each case. The 314
channels are roughly those exhibiting discrepancies less
than 0.5 K in Figure 4. Significantly lower discrepancies
would result if only the best �50 channels were used, as
suggested by Figures 6 and 7. Data at all scan angles were
averaged. These discrepancies are generally smaller for low
latitudes and ocean, and for land at night versus daytime.
One exception is channels peaking below 1–2 km over land
during the day; they perform better at high latitudes,
presumably because of reduced daytime surface heating.
An increased error due to solar surface heating is consistent
with the strong day-night difference observed over land at
all latitudes. Note that these AIRS versus ECMWF/SARTA
discrepancies are generally below �0.5K RMS for (1) 78%
of all golf balls for channels peaking above 2–6 km and
(2) 28% of all golf balls over low-latitude ocean for channels
peaking above 0 km, and of all nighttime land golf balls for
channels peaking above 1 km. The results for the best 28%
would improve if outliers in this group could be identified
more reliably and removed, as evidenced by the slight
improvement in two cases when 78% are averaged.
[28] Table 3 shows the increases in the entries of Table 2

that would result if AMSU microwave data were not avail-
able. The degradation due to loss of microwave data is
greatest at higher latitudes and over land, particularly for

Figure 5. Average RMS differences over ocean between
314 AIRS and ECMWF/SARTA radiances observed within
40� of the equator. The channels are grouped in 1-km
altitude blocks and averaged.

Figure 6. RMS differences over ocean between 314 AIRS
radiances and ECMWF/SARTA (jlatitudej < 40, daytime).

Figure 7. RMS differences over land between 314 AIRS
radiances and ECMWF/SARTA (30 < jlatitudej < 70,
nighttime).
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channels peaking below �2 km. If only the best 28% of all
golf balls are used, the degradation below �2 km is signif-
icant only over land.
[29] Figure 8 characterizes SC performance in another

fashion. The SC algorithm was trained on the 314 best
channels over daytime ocean and within ±40� latitude, and
was then applied to a typical daytime AIRS granule obtained
14 July 2003, more than a month earlier than any of the
training data. The granule is centered southwest of Hawaii
near 175�W, 5�N. Figure 8 (top) shows the original AIRS
14-km FOV brightness temperatures at 2187.8 cm�1; at this
wave number the weighting function peaks �230 m above
the nominal surface and has some sensitivity to CO. Since
CO is less significant near the equator and generally
smoothly distributed locally, its contributions to Figure
8 are presumably negligible. Each vertical scan line contains
90 FOVs. The baseline has been increased toward the limb
by averaging the SC results for all scans and restoring that
average decrease with angle to both the top and middle
images. Within the major clouds it can be seen that only a
few golf balls have even one FOV with cloud perturbations
less than 5 K.
[30] Figure 8 (middle) shows the angle-flattened SC

cloud-cleared radiances, most of which fit within a 2-K
dynamic range and, more locally, within a �0.6-K range.
Each vertical scan line contains 30 golf balls that have been
bilinearly interpolated. It is evident that most clouds have
been cleared with reasonable accuracy even without any
fully clear FOVs, and that only the more intense clouds
remain evident. The original image is everywhere colder
than the cleared image, the offset being �1K for the clearest
golf balls. The cleared image has a temperature difference
left-to-right of 1.36 K, whereas the corresponding difference
for the NOAA/NCEP-provided sea surface temperatures in
the Figure 8 (bottom) is �1.6 K. Both the SC-cleared and
NCEP sea surface data exhibit the same sharp thermal front
centered in both images.
[31] One of the more surprising results from these SC

experiments is the near lack of performance degradation at

extreme scan angles. Table 4 lists the RMS differences
between the ECMWF/SARTA and SC-corrected AIRS
radiances as a function of scan angle for a representative
channel at 2390.1 cm�1 peaking near 1.9 km. All golf balls
were tested for 3 days, including day and night, land and
sea. The percentages of these golf balls that passed the
threshold for each angular group are also listed. The
acceptance thresholds were 1 and 2 K for channels peaking
near 2.7 and 0.47 km, respectively. One reason the listed
RMS cloud-clearing performance actually improves near
the limb is that somewhat fewer golf balls pass the cloud
test there. Together the slightly improved performance and
reduced yield near the limb suggest that SC performance is
not only nearly independent of viewing angle, but also
largely independent of spatial resolution, for the FOV area
increases more than a factor of three at the extreme viewing
angle. This result is expected, however, if the SC algorithm
can indeed successfully use FOVs that are each only partly
cloud-free. Thus this result for the clouds of Figure 8 rein-
forces the earlier observation that stochastic cloud clearing
appears successful even when golf balls have no totally
clear FOVs.
[32] Another way to evaluate the relative performance of

alternative cloud-clearing methods is to measure the degree
to which adjacent golf ball radiances are cleared to approx-
imately the same values. This test is useful because local
clear air atmospheric variations are roughly an order of
magnitude smaller than are cloud perturbations, i.e., tenths
of degrees versus degrees. Such tests require that the cloud-
clearing process for each golf ball be independent of its
neighbors, which is the case here.
[33] For the spatial variation test of Figure 9 the

2223 cm�1 4-mm window channel was examined for 14
globally distributed AIRS granules observed 28 August
2005 over ocean between the latitudes of 14�N and 57.7�S.
Only the 14,129 golf balls that passed both the 78% SC test
and the comparable AIRS team quality assurance test
[Chahine et al., 2001] were designated as valid; this repre-
sents 74.8% of all golf balls. For each granule and channel a

Table 1. Cloud-Clearing RMS Difference (K) With Respect to ECMWF for the Best 28% Golf Balls

Weighting Function
Peak Height, km

Ocean Land

jLatj < 40 30 < jLatj < 70 jLatj < 40 30 < jLatj < 70

Day Night Day Night Day Night All Day Night All

0–1 0.38 0.40 0.86 0.91 1.68 0.77 1.36 1.48 0.78 1.19
1–2 0.27 0.29 0.54 0.57 0.94 0.38 0.75 0.84 0.44 0.70
4–5 0.28 0.30 0.45 0.45 0.34 0.29 0.33 0.41 0.33 0.39
6–7 0.23 0.27 0.34 0.36 0.25 0.24 0.28 0.34 0.26 0.31
10–11 0.24 0.27 0.33 0.35 0.23 0.25 0.26 0.24 0.28 0.27

Table 2. Cloud-Clearing RMS Difference (K) With Respect to ECMWF for the Best 78% Golf Balls

Weighting Function
Peak Height, km

Ocean Land

jLatj < 40 30 < jLatj < 70 jLatj < 40 30 < jLatj < 70

Day Night Day Night Day Night All Day Night All

0–1 0.70 0.74 1.49 1.47 1.62 1.11 1.53 1.49 1.21 1.39
1–2 0.50 0.53 1.02 0.98 0.90 0.68 0.91 0.92 0.77 0.87
4–5 0.42 0.42 0.65 0.62 0.43 0.44 0.48 0.51 0.46 0.49
6–7 0.36 0.36 0.54 0.49 0.37 0.36 0.42 0.42 0.35 0.40
10–11 0.28 0.30 0.38 0.37 0.29 0.28 0.32 0.25 0.31 0.30
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two-dimensional third-order polynomial was fit to the least
corrected quarter of all valid golf balls so as to minimize the
total variance between these least corrected (least cloudy)
radiances and the polynomial. This polynomial baseline thus
approximates clear air radiance values. Perfect representation
of the clear air values is not necessary because the cloud-
induced high-spatial-frequency deviations from the baseline
dominate the comparisons made here.

[34] The deviations from baseline for each golf ball were
rank ordered separately for each of the 14 granules, and then
the RMS deviation (K) of the 14 samples for each rank was
determined and plotted in Figure 9; in Figure 9, rank is
expressed in terms of the percentage of golf balls that were
better. We expect approximately a linear increase with rank
from zero RMS values, where the rate of increase is roughly
proportional to the overall RMS deviations due to cloud
effects. The right end of the curve represents the RMS worst
case discrepancy over the 14 granules if all valid golf balls
are included. Also plotted on the same graph are the results
for the same experiment and AIRS golf ball radiances, but
cloud-cleared instead using a state-of-the-art physics-based
algorithm, version 4.0.9 (Goddard Earth Sciences Distrib-
uted Active Archive Center, 2005, available at http://disc.
gsfc.nasa.gov/data/dataset/AIRS/). The physical basis for
this algorithm was generally described by Susskind et al.
[2003]. Although all valid golf balls in both the SC and
physics-based experiments had to survive both the physics-
based and SC-based initial rejection criteria, no other SC-
derived information was used in obtaining the physics-based
results, and vice versa. It is clear from these distributions
that in this case the residual SC cloud effects for the best
golf balls are roughly half those for the physics-based
cloud-clearing algorithm. Equivalently, for any given resid-
ual error threshold below �0.5 K, roughly twice as many
golf balls were cleared using SC versus physics-based
methods. The worst case residual errors are also noticeably
less for the SC method. Although such a limited experiment
is not definitive by itself, it does suggest that further study
of SC methods is warranted as still better cloud clearing
algorithms continue to be developed.
[35] The test date for Figure 9 was 28 August, which lies

between 2 of the 3 days used for training the SC algorithm,
separated by a week in each direction. Good cloud-clearing
results are also exhibited in Figure 8, where the cleared
image was observed a month before its training data set
began. These results imply that infrequent training updates
(weekly or monthly) should suffice. Since the training is

Table 3. RMS Cloud-Clearing Penalty (K) Without Using AMSU for the Best 78% Golf Balls

Weighting Function
Peak Height, km

Ocean Land

jLatj < 40 30 < jLatj < 70 jLatj < 40 30 < jLatj < 70

Day Night Day Night Day Night All Day Night All

0–1 0.01 0.06 0.19 0.35 0.11 0.47 0.13 0.18 0.40 0.34
1–2 0.01 0.04 0.14 0.25 0.10 0.37 0.11 0.15 0.29 0.24
4–5 0.01 0.02 0.08 0.08 0.04 0.15 0.07 0.03 0.07 0.09
6–7 0.01 0.01 0.05 0.03 0.01 0.08 0.06 0.01 0.01 0.04
10–11 0.00 0.00 0.00 0.01 –0.01 0.01 0.01 0.00 –0.01 0.01

Figure 8. (top) AIRS 2187.8 cm�1 angle-corrected
relative brightness temperatures (�K) near Hawaii on 14 July
2003, (middle) the corresponding angle-corrected SC cloud-
cleared temperatures, and (bottom) NOAA/NCEP estimated
sea surface temperatures.

Table 4. RMS Radiance Discrepancies at 2390.1 cm�1 Between

AIRS and ECMWF/SARTA as a Function of Scan Angle

Scan Angle,
Degrees From Nadir

AIRS Versus
ECMWF, RMS �K

Percentage
in Good 38%

All 0.44 40.6
0–10 0.49 40.6
10–20 0.58 40.1
20–30 0.43 43.0
30–40 0.38 37.6
40–48 0.36 33.5
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global, a fixed annual cycle of training data may be
adequate.
[36] It is important to note that AIRS radiances can also

be cleared by using coincident infrared spectrometers with
�1-km spatial resolution that can estimate cloud coverage
within �14-km AIRS FOVs at representative wavelengths
so as to improve the performance of N*-based cloud-
clearing methods. Analyses by Li et al. [2005] suggest
cloud-clearing performance comparable to that reported
here can be obtained by such methods, even at �14-km
resolution, although they provide no comparisons with
NWP results. They also describe a performance analysis
method based on principles similar to those employed here
in deriving the results reported in Figure 9; that is, residual
local radiance variations are most likely due to clouds.

4. Conclusions

[37] The results above lead to six operationally significant
conclusions: (1) AIRS SC-cleared radiances sounding all
altitudes are sufficiently consistent with ECMWF analysis
fields that over 30% of AIRS golf balls could probably be
profitably assimilated into operational global models in the
near future, and roughly three quarters of all golf balls could
be assimilated for channels with weighting functions peak-
ing above �5 km; (2) since this consistency in cloud-
cleared radiances could not be accidental, it implies that
under most circumstances both the ECMWF analysis fields
and AIRS radiances must be quite accurate, absent mean
errors; (3) SC algorithms appear to function well a signif-
icant fraction of the time even if no FOV is fully clear,
reducing incentives for employing alternate retrieval strat-
egies that rely on rare totally clear FOVs; (4) since SC
cloud-clearing performance is nearly independent of view-
ing angle and therefore of the diameter of the FOV, high
spatial resolution may not be essential for good cloud-
clearing performance; the area of the 14-km nadirial FOV

of AIRS increases by more than a factor of three at the
highest scan angles; (5) initial comparisons of physics-
based and stochastic cloud-clearing methods suggest that
SC methods are quite promising and that their continued
development and evaluation are warranted; and (6) effective
SC cloud-clearing algorithms should require no more than a
single lightly loaded PC for real-time execution.
[38] The 314 channels characterized in this paper were

chosen because they agreed well with ECMWF/SARTA.
There is hope that these SC methods could clear many other
channels once the reasons for their divergence from
ECMWF are better understood. Furthermore, most of the
radiance discrepancies observed on certain water vapor
channels are believed to be due to weaknesses in the
ECMWF upper tropospheric water vapor analyses. These
SC methods should be extensible beyond 70� latitude to the
poles by linear or nonlinear addition of land surface
elevation and latitude to the inputs of operators A, B, C,
and D, and by further stratification, especially for surface
type The large training ensembles required to achieve
adequate statistics for all surface elevations, types, and
conditions were not available for the experiments reported
here.
[39] The SC algorithms detailed here are only simple

examples of what can be implemented under the SC
strategy. Alternative routines could be developed for FOV
selection and averaging, for handling all scan angles, for
establishing protocols and thresholds for classifying golf
balls into two or more categories, for incorporating other
nonlinearities, for iterating results, and for training. Neural
networks can effectively combine some of these functions,
possibly making stratification unnecessary. The essence of
SC algorithms is their substitution of stochastic models for
physical ones, although physical reasoning can be incorpo-
rated in their design.
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